シリーズ6年上第17回・くわしい解説

目次	ζ	
重要問題チェック	1	p.2
重要問題チェック	2	⋯p. 3
重要問題チェック	3	p.4
重要問題チェック	4	p.6
重要問題チェック	5	p.9
重要問題チェック	6	p.10
ステップアップ演習	1	p.12
ステップアップ演習	2	p.13
ステップアップ演習	3	p.16
ステップアップ演習	4	p.19
ステップアップ演習	4	p.21
ステップアップ演習	4	 p.23
ステップアップ演習	4	⋯p. 24

(1) 「百の位を四捨五入」ではなく、四捨五入して「百の位まで」求めることに注意しましょう。

百の位までにするのですから、十の位である「5」を見て、5ですから切り上げを します。

よって3456は3500になります。

(2) 「一万の位を四捨五入」ではなく、四捨五入して「一万の位まで」求めることに注意しましょう。

一万の位までにするのですから、千の位である「2」を見て、2ですから切り捨て をします。

よって 62809 は **60000** になります。

(3) 「小数第2位を四捨五入」ではなく、四捨五入して「小数第2位まで」求めることに注意しましょう。

小数第2位までにするのですから、小数第3位である「1」を見て、1ですから切り 捨てをします。

よって 3.14159 は 3.14 になります。

(1) 最小の整数は、切り上げをして300になる、最も小さい数です。

切り上げて百の位が3になるのですから、切り上げる前は2です。

切り上げになるためには、十の位は5以上でなければなりません。最も小さい数は 5です。

十の位を5にしたら、一の位はどんな数であっても四捨五入すると300になりますから、一の位は0から9まで何でもよく、最も小さい数である0にします。

よって, 百の位は 2, 十の位は 5, 一の位は 0 ですから, 最小の整数は 250 です。

最大の整数は、切り捨てをして300になる、最も大きい数です。

切り捨てて百の位が3になるのですから、切り捨てする前も3です。

切り捨てになるためには、十の位は4以下でなければなりません。最も大きい数は 4です。

十の位を4にしたら、一の位はどんな数であっても四捨五入すると300になりますから、一の位は0から9まで何でもよく、最も大きい数である9にします。

よって、百の位は3、十の位は4、一の位は9ですから、最大の整数は349です。

- (2) 四捨五入して9になる数の範囲は、8.5以上9.5未満です。
 - 注意 9.5 未満ではなく, 9.4 以下にしてしまうミスが非常に多いです。注意しましょう。たとえば 9.49 でも四捨五入すると 9 になるし, 9.499 でも四捨五入すると 9 になります。
 - B÷14=8.5以上9.5未満となり、8.5×14=119、9.5×14=133ですから、
 - B = 119以上133未満です。

Bは119以上ですから、最小の整数は119です。また、133未満ですから最大の整数は132です。

注意 132÷14=9.42…ですから、132を四捨五入すると確かに9になります。

このような問題では、A-B=C, $D\times D=A$, $D\times E=F$, $E\times B=G$ の4つの式のうち、文字の種類が最も少ない「 $D\times D=A$ 」に注目します。

もしD=1 だったら、 $A=1\times1=1$ となり、DとAが同じ数になってしまうのでダメです。

- D=2 だったら、A=2 \times 2=4 \times \times 1 \times 1
- D=3 だったら、 $A=3\times3=9$ となり、これもO Kです。
- D=4だったら、 $A=4\times4=16$ となり、9よりも大きくなるのでダメです。
- もちろんD=5以上の場合もダメです。

結局.(D, A)として考えられるのは.(2, 4)と(3, 9)だけです。

- (D. A)=(2, 4)の場合.「DXE=FIの式に注目すると.
- $2\times1=2$ はDとFが同じになるからダメ,
- 2×2=4はDとEが同じなのでダメ,
- $2 \times 3 = 6 40 \text{ K}$
- 2×4=8はAとEが同じなのでダメ。
- 2×5=10は9以上になっているのでダメ。

 $L_{0}(D, A) = (2, 4) \cap C_{0}(E, F) = (3, 6) \cap C_{0}(E, F)$

 $[E \times B = G]$ の式に注目すると,

- $3\times1=3$ はEとGが同じになるからダメ,
- 3×2=6はDとBが同じなのでダメ.
- $3\times3=9$ はEとBが同じなのでダメ,
- 3×4=12は9以上になっているのでダメ。

次に,(D, A)=(3, 9)の場合を考えます。

「DXE=F」の式に注目すると、

 $3 \times 1 = 3$ は D と F が同じになるからダメ,

 $3 \times 2 = 6 \text{ td O K}$

 $3\times3=9$ はDとEが同じなのでダメ,

3×4=12は9以上になっているのでダメ。

 $[E \times B = G]$ の式に注目すると、

 $2\times1=2$ はEとGが同じになるからダメ,

 $2 \times 2 = 4$ は E と B が同じなのでダメ,

2×3=6はDとBが同じなのでダメ,

 $2\times4=8110K$

2×5=10は9以上になっているのでダメ。

まだ使っていない式は「A-B=C」です。

これで, (A, B, C, D, E, F, G)は, (9, 4, 5, 3, 2, 6, 8) であることがわかりました。

このような問題では, 勝敗表を書いて整理します。

右の勝敗表において、★のところはAはDに勝ったか 負けたかを表し、☆のところはCはBに勝ったか負けた かを表します。

A対A, B対B, …, E対Eという試合はないので, しゃ線を引いてあります。

問題に、AはDに勝ったと書いてありました。

逆に言うと、DはAに負けたのですから、右の表のように書きこむことができます。

には	Α	В	С	D	Е
Α				*	
В					
С		☆			
D					
Ε					

には	Α	В	С	D	Ε
Α				0	
В					
С					
D	×				
Ε					

同じようにして、 $\lceil B \, \text{tl} \, A \, \text{cl} \, B \, \text{result} = \lceil A \, \text{tl} \, B \, \text{tl} \, B \, \text{tl} \, \text{tl}$.

には	Α	В	O	D	Е
Α		×		0	
В	0				
С					
D	X				
Е					

「CはBに勝った」=「BはCに負けた」。

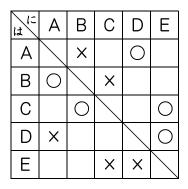
はいい	Α	В	С	D	Е
Α		X		0	
В	0		×		
С		0			
D	×				
Ε					

シリーズ6上第17回 くわしい解説

「DはEに勝った」=「EはDに負けた」。

には	Α	В	С	D	Ε
Α		X		0	
В	0		×		
С		0			
D	×				0
Е				X	

「EはCに負けた」=「CはEに勝った」。



他に、「勝ち数が同じチームはありませんでした」と書いてありました。

どのチームも、自分以外の4チームと試合をするので、4試合するはずです。

よってAからEの5チームの勝敗は、「4勝0敗」「3勝1敗」「2勝2敗」「1勝3敗」「0勝4敗」のいずれかになります。

まず、 $\lceil 4$ 勝0敗」となるチームが1チームあるはずですが、A、B、D、Eにはすでに負けがあります。

よって、「4勝0敗」となるのはCチーム以外にはありえません。

には	Α	В	С	D	Е
Α		X		0	
В	0		×		
C		0			0
D	X				0
Е			X	X	

よって、CはA、Dにも勝ちました。

逆に, A, DはCに負けました。

また,「O勝4敗」となるチームが1チームあるはずですが、A.B.C.Dにはすでに勝ちがあります。

よって、 $\lceil 0$ 勝4敗」となるのは $\exists + -\Delta$ 以外にはありえません。

よって、EはA、Bにも負けました。

逆に, A, BはEに勝ちました。

残った対戦はB対Dですが、もしBがDに負けたとしたらAもBもDも2勝2敗となり、「勝ち数が同じチームがない」という条件に反します。

よって、BはDに勝ち、逆にDはBに負けたことになります。

Aは2勝2敗, Bは3勝1敗, Cは4勝0敗, Dは1勝3敗, Eは0勝4敗ですから, 勝ち数が多い方から順に並べると, C, B, A, D, Eになります。

には	Α	В	С	D	Е
Α		×	×	\bigcirc	
В	0		X		
С	0	0		0	0
D	×		×		0
Ε			X	X	

には	Α	В	С	D	Ε
Α		×	×	0	0
В	0		×		0
С	0	0		0	0
D	×		X		0
Е	X	X	X	X	

には	Α	В	С	D	Ш
Α		X	×	0	0
В	0		×	0	0
С	\cap	\bigcirc		\bigcirc	\bigcirc
D	×	×	×) ()

まず、C「ぼくとAの間にゴールした人は2人いた」に注目します。

次に、D「ぼくはCの次にゴールした」に注目すると、 $\int CD$ 」の順番だったことがわかります。

「 $C \bigcirc \bigcirc A$ 」の場合は「 $C \bigcirc \bigcirc A$ 」となり、「 $A \bigcirc \bigcirc C$ 」の場合は「 $A \bigcirc \bigcirc C$ 」となります。

ところで「AOOCD」ですが、5人で走ったのですから、この場合Aは1位になってしまいます。ところが、A「ぼくは1位ではなかった」と言っていますからこれはダメです。

よって、「CDOA」の並びのみが合っていることになります。

また、E「ぼくはAの次にゴールした」に注目すると、FCDOAE」となり、Oには残りの人であるBが入るので、FCDBAE」の順にゴールしたことがわかりました。

答えは、A4位、B3位、C1位、D2位、E5位です。

どこに注目すればうまく解けるかを考えましょう。

 ア
 4
 イ

 ウ
 エ
 オ

 2.2
 カ
 8

「力」に注目すると,「4+エ+カ」と「2.2+カ+8」は等しいことがわかります。

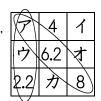
ア 4 イ ウ エ オ 2.2 カ 8

てんびんの片方のお皿には「4とエとカ」が、もう片方のお皿には「2.2とカと8」が乗っていて、つり合っているイメージです。

両方のお皿から「力」を取り除いても、まだつり合っています。

つまり、 $\lceil 4 \lor \bot \rfloor$ が、 $\lceil 2.2 \lor 8 \rfloor$ とつり合っているので、 \bot は、2.2 + 8 - 4 = 6.2 です。

次に「ア」に注目すると,「ア+6.2+8」と「ア+ウ+2.2」が等しく,「ア」を取り除くと「6.2+8」と「ウ+2.2」が等しいことになるので,ウは 6.2+8-2.2=12です。



次に「イ」に注目すると、「2.2 + 6.2 + 4」と「4 + 4 + 8」が等しく、「イ」を取り除くと「2.2 + 6.2」と「4 + 8」が等しいことになるので、オは 2.2 + 6.2 - 8 = 0.4です。

_			_
	ア	4	17)
	12/	6.2	牙
	2.2	h	8/

これで横1列がそろいました。

 $12 + 6.2 + 0.4 = 18.6 \ \text{ct}$

たて、横、ななめのどの3つの和も、すべて18.6であることがわかりました。

したがって、アは 18.6-(12+2.2)=4.4、または、18.6-(6.2+8)=4.4、イは 18.6-(2.2+6.2)=10.2、または、18.6-(0.4+8)=10.2、カは 18.6-(4+6.2)=8.4、または、18.6-(2.2+8)=8.4です。

7 4.4	4	í0.2
[†] 12	- 6.2	0.4
2.2	² 8.4	8

P = 4.4, I = 10.2, I = 10.2, I = 10.4, I =

別解 右の図の4とオの平均が2.2になることを知っていると、もっと カンタンに解くことができます。

 $(4+t)\div 2=2.2\ \tau t h h h h h = 2.2\times 2-4=0.4\ \tau t h$

ア	4	1
ウ	H	A
2.2)	カ	8

同じようにして, $(4+ \dot{p}) \div 2 = 8$ ですから, $\dot{p} = 8 \times 2 - 4 = 12$ です。

7/	4	1
ウ	エ	0.4
2.2	カ	8

工は12と0.4の平均であることもおぼえておきましょう。

 $I = (12 + 0.4) \div 2 = 6.2 \ \text{c}$

ア	4	イ
(12)	エ	0.4
2.2	カ	8

6.2 はアと8の平均でもあるので、 $P = 6.2 \times 2 - 8 = 4.4$ です。

6.2 はイと 2.2 の平均でもあるので、 $1 = 6.2 \times 2 - 2.2 = 10.2$ です。

P	4	1
12	6.2	0.4
2.2	カ	8

6.2 は 4 と 力 の 平均 で も あ る の で , カ = 6.2 × 2 - 4 = 8.4 で す 。

T = 4.4, I = 10.2, I = 10.2, I = 10.4, I = 1

7 4.4	4	10.2
[†] 12	₹.2	0.4
2.2	² 8.4	8

ステップアップ演習 1

- (1) ① のカードは最も小さいので、1回戦で必ず負けます。 1回戦で負けている、B、C、E、Hが、1を持っている可能性がある人です。
- (2) 「7のカードは、8のカードの次に強いカードです。
 よって、7のカードを持っている人は、8のカードを持っている人にだけ負けます。
 8のカードを持っている人は優勝した人なのでGです。
 よって「7のカードを持っているのは、Gに負けた人です。

Gは1回戦でHに,2回戦でFに,3回戦(決勝)でDに勝ちました。

よって $\boxed{7}$ のカードを持っている可能性のある人は、 \boxed{D} , \boxed{F} , \boxed{H} です。

ステップアップ演習 2 (1)

全部で140票のうち, すでに130票まで開票されています。残りは140-130=10(票)です。

まず、当選確実な人を求めます。

当選確実とは、今後どんなマズい状況になっても、ちゃんと上位3位までに入れることが確実ということです。

---- Aが当選確実かどうか -----

Aにとってマズい状況なのは、上位4人がすべて 同じ票数になることです。

つまり、右の表のようになるとマズいわけです。

A B C D E F 34 34 34 34 11 8

28 | 26 | 23 | 11

С

В

34

DIE

この表のようになるためには、B はあと 34-28=6(票)、C はあと 34-26=8(票)、D はあと 34-23=11(票)とる 必要があるので、B、C、D 合わせて、6+8+11=25(票)と

必要があるので、B、C、D合わせて、6+8+11=25(票)とらないといけませんが、残りはあと10票なので、こういう状況になることはありません。

つまり、上位 4人がすべて同じ票数になることはなく、A は 3 位までには確実に入るので、A は 3 選確実です。

Bにとってマズい状況なのは、Aは当選確実だから 放っておくとして、残りB、C、Dの3人が同じ票数に なることです。

つまり、右の表のようになるとマズいわけです。

Α	В	С	D	Ε	F		
34	28	26	23	11	8		
$\overline{\mathbb{T}}$							
Α	В	С	D	Ε	F		
34	28	28	28	11	8		

この表のようになるためには、C はあと 28-26=2 (票),D はあと 28-23=5 (票) とる必要があるので、C , D 合わせて,2+5=7 (票)とらないといけませんが,残りは あと 10 票なので、このいう状況になることはありえます。

そして残り 10-7=3(票)が、CやDがとったりすると、Bの当選はなくなります。

よって、Bは当選確実というわけではないので、当選確実なのはAだけです。

次に,落選確実な人を求めます。

上位3位までに入れば当選ですが、Fは現在8票なので、 残り10票がすべてFに入っても、8+10=18(票)にしか ならず、当選はできません。

Α	В	С	D	Е	F
34	28	26	23	11	8

Eも,残り10票をすべてもらっても,11+10=21(票)にしかならず,当選できません。

しかしDは、残り10票をすべてもらうと23+10=33(票)となり、上位3位に入るので当選できます。

つまりDは、落選確実というわけではありません。まだ当選する可能性はあります。 よって落選確実なのは、EとFです。

これで、当選確実なのはAで、落選確実なのはE.Fであることがわかりました。

ステップアップ演習 2 (2)

Cは今のところ3位なので、当選の有力候補ですが、当選確実というわけではありません。Dの存在がコワイです。

残り 140-130=10(票)のゆくえによって, Dが当選することもありえます。

Α	В	С	D	Е	F
34	28	26	23	11	8

この状況からDが追い上げて、Cと同じ票数になったとすると右の表のようになります。

Α	В	C	D	Ш	F
34	28	26	26	11	8

Dは 26-23=3(票)を連続してとったので、残りの票数は 10-3=7(票)です。

7票を半分にすると 3.5 票ですが,C に 3 票,D に 4 票投票 されると,C は 26+3=29 (票),D は 26+4=30 (票)となり,C は D との勝負に負けて C は落選になると思われますが,表をよく見ると,なんと!このとき C は B に勝っているので

3位となり、当選してしまうのです。

Α	В	\circ	О	Ш	H
34	28	29	30	11	8

つまり、CにとってのライバルはDだけでなく、BもDもライバルだったのです。

そこで、130 票まで開票されている状態から C と D が追い上げて、B と同じ票数になったとします。

Α	В	O	Δ	Е	F
34	28	26	23	11	8

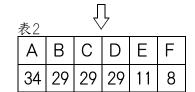
JL

Cは 28-26=2(票), Dは 28-23=5(票)とったので, 合わせて 2+5=7(票)。残っているのは, 10-7=3(票)です。

この3票のゆくえによってだれが当選するかが決まります。

衣		\			
Α	В	С	D	Е	F
34	28	28	28	11	8

Cにとってマズイ状況なのは、この3票がB, C, Dに 1票ずつ入って、右の表のような状況になることです。



つまり、表1の状態から2票とれば、当選確実ということです。

Cは2票とったら表1の状態になり、さらに2票とれば当選確実ですから、Cは最低あと 2+2=4(票)とれば、当選確実ということがわかりました。

ステップアップ演習 3 (1)

同じルールで、「1 になったらそこで終了」という問題が有名ですが(「コラッツの予想」といいます)、この問題は1 になっても終了ではなく、続いていきます。

① はじめ 1回目 2回目 3回目 4回目 5回目 6回目 7回目 8回目 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 → 4

となるので、8回操作した時点で4になります。

② さらに続けていくと.

はじめ 1回目 2回目 3回目 4回目 5回目 6回目 7回目 8回目 9回目 10回目 $20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1$

最初から4回目までを除くと、あとは「4→2→1」のくり返しです。

全部で 100 回操作するのですから、最初から4 回ぶんを取り除くと、残りは 100-4=96 (回)です。

「 $4\rightarrow 2\rightarrow 1$ 」の3回ぶんを1セットとすると、 $96\div 3=32(セット)$ ぴったりです。

よって100回操作したときは、セットの最後である「1」になります。

ステップアップ演習 3 (2)

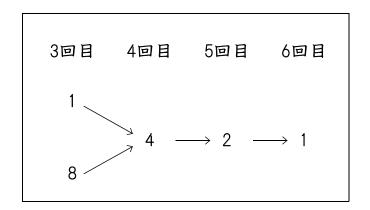
6回目から、前にもどっていきます。

6回目で1になったので,5回目は 1×2=2です。

4回目は、2×2=4です。

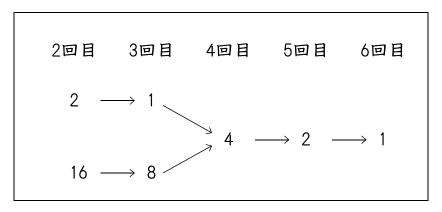
3回目は,

奇数 \times 3+1=4のとき、奇数=1です。 偶数÷2=4のとき、偶数=8です。



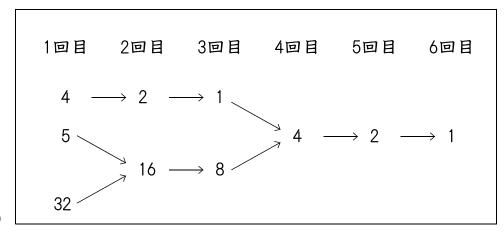
2回目は、3回目が1だったときは2のみです。

3回目が8だったときは、奇数×3+1=8は割り切れないのでダメなので、偶数÷2=8のときのみで、8×2=16です。



1回目は、2回目が2だったときは4のみです。

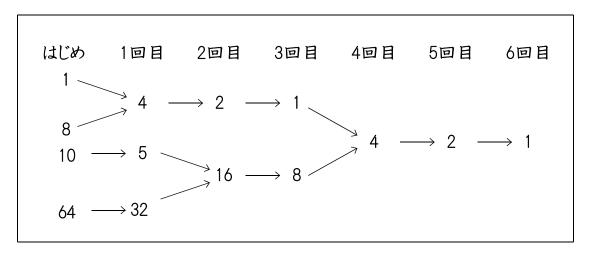
2回目が 16 だったときは、奇数×3+1= 16 のときは、 $(16-1)\div 3=5$ です。 偶数÷2= 16 のときは、 $16\times 2=32$ です。



はじめは、1回目が4だったときは、1と8です。

1回目が5だったときは,奇数 $\times 3+1=5$ のときは割り切れないのでダメです。 偶数÷2=5のときは, $5\times 2=10$ です。

1回目が 32 だったときは、奇数×3+1=32 のときは割り切れないのでダメです。 偶数÷2=32 のときは、 $32\times2=64$ です。



よって答えは、1,8,10,64です。

ステップアップ演習 4 (1)

ふつうの十進法では、0から9までの、10種類の数字を使って数を表します。

ところがこの問題では、4の数字を使わないので、残り9種類の数字を使って数を表すことになるので、9進法ということになります。

しかし、ふつうの9進法ではありません。ふつうの9進法では、0から8までの9種類の数字を使います。

そこで「ふつうの9進法」と「この問題の9進法」 とをくらべたものが、右の表です。

ふつう	0	1	2	3	4	5	6	7	8
ふつう この問題	†	1	‡	1	‡	‡	‡	†	‡
この問題	0	1	2	3	5	6	7	8	9

この問題での「176号室」というのは、この問題においての書き方で「176」になったわけで、ふつうの9進法では「176」ではありません。

右の表を見るとわかる通り

この問題での「1」は、ふつうの9進法でも「1」であり、

この問題での「7」は、ふつうの9進法では「6」。

この問題での「6」は、ふつうの9進法では「5」ですから、

この問題での「176」は、ふつうの9進法では「165」になります。

よって、はじめからかぞえて140番目の部屋であることがわかりました。

ステップアップ演習 4 (2)

この問題も(1)と同じように、「ふつうの9進法」と「この問題の9進法」とをくらべる表を利用します。

ふつう	0	1	2	3	4	5	6	7	8
	1	1	‡	‡	‡	‡	‡	‡	1
この問題	Ο	1	2	3	5	6	7	8	9

(2)は、はじめからかぞえて258番目の部屋が何号室かを求める問題です。

つまり、258という数を9進法で表しなさいという問題です。

この問題は機械的な計算方法もありますが、以下では9進法の意味を考えて解く方法で説明します。

9進法の位取りは、右の図のようになります。 いまは258を9進法で表すのですから、729の位には何も 入れません。 □ □ □ □ ↑ ↑ ↑ ↑ 729 81 9 1 ののののの 位位位位位

258÷81=3 あまり 15 ですから,81 の位には3を入れて,残り15です。

 $15\div 9=1$ あまり 6 ですから、9の位には1を入れ、1の位には6を入れます。

よって,258を9進法で表すと,316となります。

ただし、この表し方は、「ふつうの9進法」の 場合です。

ふつう	0	1	2	3	4	5	6	7	8
	‡	1	‡	‡	‡	‡	‡	†	8
この問題	0	1	2	3	5	6	7	8	9

この問題の場合は、右の表のように、数字を変えなければなりません。

「ふつうの9進法」での3は、「この問題での9進法」でも3です。 「ふつうの9進法」での1は、「この問題での9進法」でも1です。 「ふつうの9進法」での6は、「この問題での9進法」では7です。

よって,258番目の部屋は,「316」号室ではなく「317」号室になります。

ステップアップ演習 5 (1)

2ケタと3ケタの数に分けて考えます。

2ケタの整数は、10から99までで、99-10+1=90(個)あります。

注意 99-10=89(個)ではありません。注意しましょう。

2ケタの整数が90個あるのですから、バラバラにすると 2×90=180(個)です。

300 個目の数字を知りたいのですが、2 ケタの数字は 180 個あったのですから、3 ケタの数字の 300-180=120 (個)目を求めることになります。

3ケタの数1つは3個の数字を持っているので、120個目ということは、 $120 \div 3 = 40$ (個)目の3ケタの数を求めればよいわけです。

3ケタの数は100から始まります。

もし100から200までだったら,200-100+1=101(個)あります。

____100 から _____までだったら,(_____ −100+1) 個です。これが 40 個になればよいので, _____ −100+1= 40 です。

40-1=39 39+100=139 ですから,100から139までが,3ケタの数が40個あり,数字が120個あることになります。

よって答えは139をバラバラにして1.3.9にしたときの最後の数字である9です。

ステップアップ演習 5 (2)

たとえば,109,110,111,112の中に,数字の「1」は何個あるでしょうか。

109 には1 個,110 には2 個,111 には3 個,112 には2 個ありますから, 全部で 1+2+3+2=8(個)になりますね。

別の数え方もあります。百の位だけ、十の位だけ、一の位だけ数えていく方法です。

百の位は、 $\underline{1}09$ 、 $\underline{1}10$ 、 $\underline{1}11$ 、 $\underline{1}12$ ですから4個あります。 十の位は、109、 $1\underline{1}0$ 、 $1\underline{1}1$ 、 $1\underline{1}2$ ですから3個あります。 一の位は、109、110、 $11\underline{1}$ 、112 ですから1個あります。

よって全部で、4+3+1=8(個)です。

(2)の問題も、百の位・十の位・一の位だけ数えていく方法で解きます。

10 から99 までの2 ケタの数を,0 をつけ加えて「010 から099 まで」としても,「1」の個数には影響せず,しかもすべて3 ケタの数として扱えますから便利です。

そうすると、「10から300まで」は「010から300まで」になります。

百の位の「1」は、「 $\underline{1}$ A B」という数が何個あるかを数えることになります。 「 A B」は、00 から 99 までの 100 個ありますから、百の位の「1」は 100 個あることになります。

十の位の「1」は、「 $A \subseteq B$ 」という数が何個あるかを数えることになります。 「A B」は、「0 O」から「2 9」までの30個ありますから、十の位の「1」は30個あることになります。

一の位の「1」は、「 $AB\underline{1}$ 」という数が何個あるかを数えることになります。 「AB」は、「O1」 から「29」までの29個ありますから、一の位の「1」は 29個あることになります。

百の位の「1」は100個,十の位の「1」は30個,一の位の「1」は29個ありますから,全部で100+30+29=159(個)の「1」があります。

ステップアップ演習 6

連続整数の和で表す方法は、「1以外の奇数の約数の個数」通りできます。

70の約数は, 1, 2, 5, 7, 10, 14, 35, 70ですが, このうち奇数の約数は, 1, 5, 7, 35の4個です。

よって「1以外の奇数の約数」は、5、7、35の3個ありますから、70を連続整数の和で 表す方法は、3通りあります。

5の場合は、70を5個の連続整数の和で表します。 70÷5= 14ですから、まん中を14にして、「○+○+14+○+○」となります。 よって、「12+13+14+15+16」になります。

7の場合は、70を7個の連続整数の和で表します。

 $70\div7=10$ ですから,まん中を 10 にして,「 $\bigcirc+\bigcirc+\bigcirc+10+\bigcirc+\bigcirc+\bigcirc$ 」となります。

1 + 10 + 10 + 10 + 11 + 12 + 13 | 1 + 10 + 12 + 13 | 1 + 10 + 12 + 13 |

35の場合は、70を35個の連続整数の和で表します。

 $70 \div 35 = 2$ ですから,まん中を 2 にして,「〇 + 〇 + … + 〇 + 2 + 〇 + … + 〇」になります。

35 個のうち、「2」の1個以外は、35-1=34(個)ですから、2の左側にも右側にも、 $34\div2=17$ (個)ずつあります。

よって「 \bigcirc + \bigcirc 」のうち、一番左の数は、2よりも 17小 さい数なので、2-17= -15です。

(気温が2℃だったのが,17℃下がれば,-15℃になることがわかりますね。)

 $\begin{array}{c} \text{$l$ ching} \ \text{l ching}$

(-1) と 1 は相殺され、(-2) と 2 は相殺され、…、(-15) と 15 は相殺されるので、残るのは、15 よりも大きい「16+17+18+19」です。

結局 70 を連続整数の和で表す方法は, 12+13+14+15+16, 7+8+9+10+11+12+13, 16+17+18+19 の 3 通 り あ り ま す 。

ステップアップ演習 7

ままこだ この問題のような「継子立て」の問題を解くためには,「2の累 乗」の考え方に慣れ ておく必要があります。

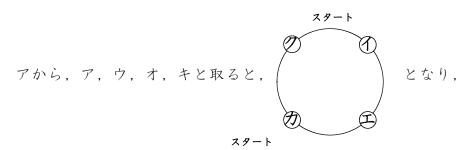
「2の累乗」とは、2を何回かかけてできる数のことで、たとえば8は、8=2×2×2 ですから,2の累乗です。

同じようにして, 2, 4=2×2, 16=2×2×2×2, 32=2×2×2×2×2, … なども, 2の 累乗です。

「継子立て」の問題の場合は、この「2の累乗」の枚数だけカードがあったときに、最 後に残るカードがカンタンにわかるのです。

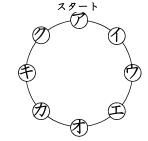
のように8枚のカードがあったとします。 たとえば,

「8」という数は、「2の累乗」です。



となり、最後に工を取ると、クが残ります。

クというのは, はじめに取ったアのカードの一番後ろにある カードですね。



このようにして,「2の累乗」枚のカードがあったときには,

はじめに取るカードの、一番後ろにあるカードが最後に残る。

ということがわかりました。

よって、たとえば右の図のように32枚のカードが並んでいたとして、1のカードから取っていったとしたら、最後に残るのは32のカードであることが、(実際に取らなくても)わかります。

なぜなら、32 は2の累乗 $(2\times2\times2\times2\times2)$ だからです。

32 (1) (2) (31) (3) (30)

ここで1つ,困ったことがあります。

この問題では、 1 から 90 までの 90 枚のカードが並べてあるのですが、 90 というのは 2 の累乗ではないのです。 困った困った。

そこで、 1 のカードを取ったら残りは89枚、 3 のカードも取ったら残りは88枚、というふうに枚数を減らしていって、「2 の累乗」枚のカードが残るようにします。

90よりも小さいが最も近い「2の累乗」は、2×2×2×2×2×2= 64です。

よって、カードが64枚残るように、90-64=26(枚)のカードを取り除きます。

①, ③, ⑤, … のようにして、26 枚のカードを取り除くのですから、26 枚目のカードは、(等差数列のN番目の公式を利用して) はじめ+公差×(N-1)=1+2×(26-1)=51です。

よって、51のカードまで取り除いたときに、残ったカードの枚数は 64 枚という、12の累乗」枚になります。

「2の累乗」枚のカードがあったときには,

はじめに取るカードの、一番後ろにあるカードが最後に残る。

ということがわかっていましたね。

はじめに取るカードとは、[51]まで取ったときの次に取る、[53]のカードです。

よって、最後に残るのは、53のカードから見て一番後ろにある、52のカードになりますから、答えは52です。